13,910 research outputs found

    Modelling plasticity of unsaturated soils in a thermodynamically consistent framework

    Get PDF
    Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented and it is finally shown that the Barcelona Basic Model, a commonly accepted model for unsaturated soils, as well as all models deriving from it, appear as special extreme cases of the thermodynamic framework proposed here

    Time resolved tracking of a sound scatterer in a turbulent flow: non-stationary signal analysis and applications

    Get PDF
    It is known that ultrasound techniques yield non-intrusive measurements of hydrodynamic flows. For example, the study of the echoes produced by a large number of particle insonified by pulsed wavetrains has led to a now standard velocimetry technique. In this paper, we propose to extend the method to the continuous tracking of one single particle embedded in a complex flow. This gives a Lagrangian measurement of the fluid motion, which is of importance in mixing and turbulence studies. The method relies on the ability to resolve in time the Doppler shift of the sound scattered by the continuously insonfied particle. For this signal processing problem two classes of approaches are used: time-frequency analysis and parametric high resolution methods. In the first class we consider the spectrogram and reassigned spectrogram, and we apply it to detect the motion of a small bead settling in a fluid at rest. In more non-stationary turbulent flows where methods in the second class are more robust, we have adapted an Approximated Maximum Likelihood technique coupled with a generalized Kalman filter.Comment: 16 pages 9 figure

    Fourier analysis of finite element preconditioned collocation schemes

    Get PDF
    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes

    Clumpy Disc and Bulge Formation

    Get PDF
    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our Supernova feedback model is able to establish a self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexit with other channels of bulge assembly such as bar and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201

    Climate Change, Insurability of Large-scale Disasters and the Emerging Liability Challenge

    Get PDF
    This paper focuses on the interaction between uncertainty and insurability in the context of some of the risks associated with climate change. It discusses the evolution of insured losses due to weather-related disasters over the past decade, and the key drivers of the sharp increases in both economic and insured catastrophe losses over the past 20 years. In particular we examine the impact of development in hazard-prone areas and of global warming on the potential for catastrophic losses in the future. In this context we discuss the implications for insurance risk capital and the capacity of the insurance industry to handle large-scale events. A key question that needs to be addressed is the factors that determine the insurability of a risk and the extent of coverage offered by the private sector to provide protection against extreme events where there is significant uncertainty surrounding the probability and consequences of a catastrophic loss. We discuss the concepts of insurability by focusing on coverage for natural hazards, such as earthquakes, hurricanes and floods. The paper also focuses on the liability issues associated with global climate change, and possible implications for insurers (including D&O), given the difficulty in identifying potential defendants, tracing harm to their actions and apportioning damages among them. The paper concludes by suggesting ways that insurers can help mitigate future damages from global climate change by providing premium reductions and rate credits to companies investing in risk-reducing measures.

    Evaluating The Effectiveness of Terrorism Risk Financing Solutions

    Get PDF
    The 9/11 attacks in the United States, as well as other attacks in different parts of the world, raise important questions related to the economic impact of terrorism. What are the most effective ways for a country to recover from these economic losses? Who should pay for the costs of future large-scale attacks? To address these two questions, we propose five principles to evaluate alternative programs. We first discuss how a federal insurance program with mandatory coverage and a laissez faire free-market approach for providing private insurance will fare relative to these principles. We conclude that neither solution is likely to be feasible here in the United States given the millions of firms at risk and the current structure of insurance regulation. We then evaluate how well the U.S. Terrorism Risk Insurance Act (TRIA), a public-private program to cover commercial enterprises against foreign terrorism on U.S. soil, meets the five principles. In particular, we show that TRIA has had a positive effect on availability of terrorism coverage and also has significantly contributed to reducing insurance premiums. TRIA is scheduled to terminate at the end of the year, but pending legislation would extend the program for fifteen years after December 31 (HR. 2761). In this paper, we show that such a long-term extension might have important impacts on the market. This could increase the take-up rate, as prices might be even lower than they are today. We show also, however, that if TRIA were extended for a long period of time in its current form, some insurers could "game" the program by collecting ex ante a large amount of premiums for terrorism insurance, while being financially responsible for only a small portion of the claims ex post. The general taxpayer and the general commercial policyholder (whether or not covered against terrorism) would absorb the residual insured losses. This raises major equity issues inherent in the design of the program.

    A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation

    Full text link
    Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the van Cittert method are reported. The Legendre spectral element method is used for the spatial discretization to solve the filtered Navier--Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12'000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the C0-continuity across elements. No clipping on dynamic parameters was needed to preserve numerical stability
    • …
    corecore